Abstract

Laser Powder Bed Fusion (LPBF) is the predominant metal additive manufacturing technique that benefits from a significant body of academic study and industrial investment given its ability to create complex geometry parts. Despite LPBF’s widespread use, there still exists a need for process monitoring to ensure reliable part production and reduce post-build quality assessments. Towards this end, we develop and evaluate machine learning-based predictive models using height map-derived quality metrics for single tracks and the accompanying pyrometer and high-speed video camera data collected under a wide range of laser power and laser velocity settings. We extract physically intuitive low-level features representative of the meltpool dynamics from these sensing modalities and explore how these vary with the linear energy density. We find our Sequential Decision Analysis Neural Network (SeDANN) model – a scientific machine learning model that incorporates physical process insights – outperforms other purely data-driven black box models in both accuracy and speed. The general approach to data curation and adaptable nature of SeDANN’s scientifically informed architecture should benefit LPBF systems with an evolving suite of sensing modalities and post-build quality measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call