Abstract

Several theories predict that rates of phenotypic evolution should be related to the rate at which new lineages arise. However, drawing general conclusions regarding the coupling between these fundamental evolutionary rates has been difficult due to the inconsistent nature of previous results combined with uncertainty over the most appropriate methodology with which to investigate such relationships. Here we propose and compare the performance of several different approaches for testing associations between lineage-specific rates of speciation and phenotypic evolution using phylogenetic data. We then use the best-performing method to test relationships between rates of speciation and body size evolution in five major vertebrate clades (amphibians, birds, mammals, ray-finned fish and squamate reptiles) at two phylogenetic scales. Our results provide support for the long-standing view that rates of speciation and morphological evolution are generally positively related at broad macroevolutionary scales, but they also reveal a substantial degree of heterogeneity in the strength and direction of these associations at finer scales across the vertebrate tree of life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call