Abstract

Organonitrates (ON) are important components of secondary organic aerosols (SOAs). α-Pinene (C10H16), the most abundant monoterpene in the troposphere, is a precursor for the formation of several of these compounds. ON from α-pinene can be produced in the gas phase via photochemical processes and/or following reactions with oxidizers including hydroxyl radical and ozone. Gas-phase nitrogen oxides (NO2, NO3) are N sources for ON formation. Although gas-phase reactions of α-pinene that yield ON are fairly well understood, little is known about their formation through heterogeneous and multiphase pathways. In the current study, surface reactions of α-pinene with nitrogen oxides on hematite (α-Fe2O3) and kaolinite (SiO2Al2O3(OH)4) surfaces, common components of mineral dust, have been investigated. α-Pinene oxidizes upon adsorption on kaolinite, forming pinonaldehyde, which then dimerizes on the surface. Furthermore, α-pinene is shown to react with adsorbed nitrate species on these mineral surfaces producing multiple ON and other oxidation products. Additionally, gas-phase oxidation products of α-pinene on mineral surfaces are shown to more strongly adsorb on the surface compared to α-pinene. Overall, this study reveals the complexity of reactions of prevalent organic compounds such as α-pinene with adsorbed nitrate and nitrogen dioxide, revealing new heterogeneous reaction pathways for SOA formation that is mineralogy specific.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call