Abstract
The composition of cellular metabolism is different across species. Empirical data reveal that bacterial species contain similar numbers of metabolic reactions but that the cross-species popularity of reactions is so heterogenous that some reactions are found in all the species while others are in just few species, characterized by a power-law distribution with the exponent one. Introducing an evolutionary model concretizing the stochastic recruitment of chemical reactions into the metabolism of different species at different times and their inheritance to descendants, we demonstrate that the exponential growth of the number of species containing a reaction and the saturated recruitment rate of brand-new reactions lead to the empirically identified power-law popularity distribution. Furthermore, the structural characteristics of metabolic networks and the species' phylogeny in our simulations agree well with empirical observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.