Abstract

Increasing water pollution by microbes has become a source of serious health concern across the globe. Production of potentially carcinogenic disinfection by-products has marred credibility of traditional water purification techniques like chlorination. Photocatalysis has emerged as a promising alternative technique for the disinfection of water with minimal risk of harmful by-products. The process involves a wide band gap semiconductor material which, upon irradiation of light, produces electrons and holes with high redox potential to degrade organic contaminants and microbes. In this review, we analyze the research trends in photocatalytic inactivation of water borne microorganisms. This report analyzes the major factors that affect the disinfection efficiency using this process. The discussion also includes plausible mechanisms of microbial degradation as well as a kinetic model of the inactivation process. Different approaches, like doping of semiconductors or energy band engineering or plasmon coupling, have been reported for the enhancement and utilization of ambient solar light. Photocatalysis could be a cost-effective and environmentally friendly water purification technique though further research is required to enhance its efficiency with the use of solar light.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call