Abstract
Amorphous SiBCN monoliths featuring a structure of three-dimensional PDC-SiBCN network encapsulating MA-SiBCN nanoparticles (MA@PDC-SiBCN), were prepared without the need for sintering densification (>1800°C), enabling preparation of dense ceramics at a much lower temperature (1100°C). The continuous PDC-SiBCN network effectively inhibits oxygen diffusion, reducing the mass loss from B-C-N cluster oxidation and mass gain from silicon-containing clusters by 51.5% and 86.9%, respectively. Besides, the phase-separation coupled heterogeneous oxidation behaviors and kinetics of different atomic clusters in MA@PDC-SiBCN ceramic during non-isothermal oxidation up to 1500°C were investigated. Finally, the evolution of the different atomic clusters within the oxide layer during the heterogeneous oxidation process was analyzed to elucidate the micro-mechanisms behind the enhanced oxidation resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.