Abstract

In the 5G era, optical fronthaul is a major challenge in meeting growing demand. Edge computation and coordinated multipoint for 5G have stringent requirements for high throughput and low latency, either in single-wavelength or wavelength-division-multiplexing fronthaul. We propose a new silicon photonic solution to deliver 5G services on existing optical access networks with colorless optical network units, such as passive optical networks. The newly added 5G services form a heterogeneous optical access network. Using the existing fiber infrastructure, broadband services coexist with new 5G signals that can densify 5G coverage. The proposed scheme is both wavelength-selective (in the distribution network) and colorless (at the end user site). We use silicon microring modulators to create subcarriers slaved from the broadband service distributed carrier; additional microring modulators generate 5G signals exploiting those subcarriers. We experimentally validated the successful coexistence of 5G signals (various formats) with a broadband signal (various formats).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.