Abstract
The treatment of excavation by-products has been studied using Fenton and Heterogeneous Fenton processes, by the addition of zero-valent iron nanoparticles (nZVI) as catalyzer. This study demonstrated that both methods could significantly reduce the organic content of the liquid extract from excavated soils. Operating parameters, such as pH and catalyzer/oxidant (w/w) ratio, were varied to investigate their influence on the Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD) removal efficiency. In addition, Biochemical Oxygen Demand (BOD) was evaluated before and after the treatment. The optimal conditions found for conventional Fenton process were: H2O2/COD = 1 (w/w), Fe(II)/H2O2 = 0.1 (w/w) and pH = 2.5, whereas for Heterogeneous Fenton were: H2O2/COD = 0.75 (w/w), nZVI/H2O2 = 1.5 (w/w) and pH = 3. Heterogeneous Fenton resulted more efficient with respect to conventional Fenton, leading to a TOC and COD removal efficiency equal to 75.95 and 85.52%, respectively. The BOD28/COD ratio after Heterogeneous Fenton increased by about 200%, indicating the suitability of this oxidation process to achieve a biodegradability increase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Chemical Engineering Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.