Abstract
Field studies have shown that mineral dust particles can act as ice nuclei in cirrus clouds. Here, we present a laboratory investigation of heterogeneous ice nucleation on surrogates of mineral dust particles, in particular pure Arizona test dust (ATD) particles, and ATD particles coated with sulfuric acid. The experiments have been performed using a new apparatus in which ice formation on the particles is determined by optical microscopy at temperatures between 197 and 260 K and relative humidities up to water saturation. The experiments reveal that pure and sulfuric acid coated ATD particles nucleate ice at considerably lower relative humidities than required for homogeneous ice nucleation in liquid aerosols. Nucleation occurred over a broad relative humidity range indicating that the different minerals contained in ATD have different ice nucleation thresholds. No significant difference in the ice nucleation ability of pure and H2SO4 coated ATD particles was observed. Below 240 K, ice nucleated on ATD particles apparently by deposition nucleation. Preactivation of ATD particles, that is, a reduction in supersaturation, required for heterogeneous ice nucleation after a previous ice nucleation event on the same particle, has been observed for temperatures as low as 200 K. Differences of 10–30% in the onset RHice values were obtained for particles with or without preactivation. The results indicate that pure and sulfuric acid coated mineral dust particles may act as efficient ice nuclei in the atmosphere. Preactivation of the particles should be considered when modeling long‐range transport of mineral dust particles and their impact on cloud formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.