Abstract

Our current understanding of heterogeneous nucleation has been largely confined to the classical nucleation theory (CNT) that was postulated over 100 years ago based on a thermodynamic approach. Further advances in heterogeneous nucleation research requires detailed knowledge of atomistic activities at the liquid/substrate interface. In this work, using a classical molecular dynamics (MD) simulation, we investigated the atomistic mechanisms of heterogeneous nucleation in systems with a large lattice misfit (|f| > 12.5%) demonstrated by the liquid Pb and solid Cu system (denoted as the Pb(l)/Cu(s) system) with a misfit of 27.3%. We found that heterogeneous nucleation in systems with a large misfit takes place in two distinctive steps: (1) Prenucleation creates a coincidence site lattice (CSL) on the substrate surface to accommodate the majority (fcsl) of the initial misfit (f) and (2) Heterogeneous nucleation accommodates the residual misfit fr (fr = misfit − fcsl) at the nucleation temperature to create a plane of the new solid phase (a two-dimensional (2D) nucleus) through either a three-layer dislocation mechanism if fr < 0 or a three-layer vacancy mechanism if fr > 0, such as in the case of the Pb(l)/Cu(s) system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call