Abstract

Locus control regions (LCRs) are regulatory DNA sequences that are situated many kilobases away from their cognate promoters. LCRs protect transgenes from position effect variegation and heterochromatinization and also promote copy-number dependence of the levels of transgene expression. In this work, we describe the biochemical purification of a previously undescribed LCR-associated remodeling complex (LARC) that consists of heterogeneous nuclear ribonucleoprotein C1/C2, nucleosome remodeling SWI/SNF, and nucleosome remodeling and deacetylating (NuRD)/MeCP1 as a single homogeneous complex. LARC binds to the hypersensitive 2 (HS2)-Maf recognition element (MARE) DNA in a sequence-specific manner and remodels nucleosomes. Heterogeneous nuclear ribonucleoprotein C1/C2, previously known as a general RNA binding protein, provides a sequence-specific DNA recognition element for LARC, and the LARC DNA-recognition sequence is essential for the enhancement of transcription by HS2. Independently of the initiation of transcription, LARC becomes associated with beta-like globin promoters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.