Abstract
Selective catalytic hydration of silanes to silanols is studied by Ni metal nanoparticles (NPs) on activated carbon (Ni/C) prepared by in situ H2-reduction of NiO-loaded activated carbon (NiO/C). The catalytic activity of Ni/C increases with decrease in the average Ni particle size. Ni/C with the smallest size (7.6nm) exhibits a high selectivity for silanols, high turnover number (TON) of 9300, and excellent reusability. Studies on the structure–activity relationship show that metallic Ni species on the surface of small Ni metal particles are catalytically active species. Based on mechanistic studies, a catalytic cycle involving the activation of Et3SiH as the rate limiting step is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.