Abstract
Materials with enzyme-like activities and proteolytic potential are emerging as a robust and effective alternative to natural enzymes. Herein, a Hf6O8-based NU-1000 metal organic framework (Hf-MOF) is shown to act as a heterogeneous catalyst for the hydrolysis of peptide bonds under mild conditions. In the presence of Hf-MOF, a glycylglycine model dipeptide was hydrolysed with a rate constant of kobs = 8.33 × 10-7 s-1 (half-life (t1/2) of 231 h) at 60 °C and pD 7.4, which is significantly faster than the uncatalyzed reaction. Other Gly-X peptides (X = Ser, Asp, Ile, Ala, and His) were also smoothly hydrolysed under the same conditions with similar rates, except for the faster reactions observed for Gly-His and Gly-Ser. Moreover, the Hf6O8-based NU-1000 MOF also exhibits a high selectivity in the cleavage of a protein substrate, hen egg white lysozyme (HEWL). Our results suggest that embedding Hf6O8 oxo-clusters is an efficient strategy to conserve the hydrolytic activity while smoothing the strong substrate adsorption previously observed for a discrete Hf oxo-cluster that hindered further development of its proteolytic potential. Furthermore, comparison with isostructural Zr-NU-1000 shows that although the Hf variant afforded the same cleavage pattern towards HEWL but slightly slower reaction rates, it exhibited a larger stability window and a better recyclability profile. The results suggest that these differences originate from the intrinsic differences between HfIV and ZrIV centers, and from the lower surface area of Hf-NU-1000 in comparison to Zr-NU-1000.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.