Abstract

A novel concept for fabricating heterogeneous nanostructures based on different melting temperatures is developed. Au-Ag composite cross-structures are fabricated by nanowelding technologies. During the fabrication of Au-Ag composite cross-structures, Ag nanowires transform into ordered particles decorating the Au nanowire surfaces with an increase in the welding temperature because of the different melting temperatures of Au and Ag. To compare and explain the melting temperatures, the thicknesses of Au and Ag nanowires as parameters are analyzed. Scanning electron microscopy and focused ion beam imaging are used to observe the morphologies and cross sections of the fabricated samples. The evolution of 3D nanostructures is observed by atomic force microscopy, whereas the compositions and binding energies of the nanostructures are determined by X-ray diffraction and X-ray photoelectron spectroscopies. In addition, the atomic structures are analyzed by transmission electron microscopy, and the optical properties of the fabricated nanostructures are evaluated by spectrometry. Furthermore, color filter electrodes are fabricated, and their polarization properties are evaluated by sheet resistance measurements and observing the color and brightness of light-emitting diodes. The proposed method is suitable for application in various fields such as biosensors, optics, and medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.