Abstract

Cholesterol plays a unique role in the regulation of membrane organization and dynamics by modulating the membrane phase transition at the nanoscale. Unfortunately, due to their small sizes and dynamic nature, the effects of cholesterol-mediated membrane nanodomains on membrane dynamics remain elusive. Here, using ultrahigh-speed single-molecule tracking with advanced optical microscope techniques, we investigate the diffusive motion of single phospholipids in the live cell plasma membrane at the nanoscale and its dependency on the cholesterol concentration. We find that both saturated and unsaturated phospholipids undergo anomalous subdiffusion on the length scale of 10–100 nm. The diffusion characteristics exhibit considerable variations in space and in time, indicating that the nanoscopic lipid diffusion is highly heterogeneous. Importantly, through the statistical analysis, apparent dual-mobility subdiffusion is observed from the mixed diffusion behaviors. The measured subdiffusion agrees well with the hop diffusion model that represents a diffuser moving in a compartmentalized membrane created by the cytoskeleton meshwork. Cholesterol depletion diminishes the lipid mobility with an apparently smaller compartment size and a stronger confinement strength. Similar results are measured with temperature reduction, suggesting that the more heterogeneous and restricted diffusion is connected to the nanoscopic membrane phase transition. Our conclusion supports the model that cholesterol depletion induces the formation of gel-phase, solid-like membrane nanodomains. These nanodomains undergo restricted diffusion and act as diffusion obstacles to the membrane molecules that are excluded from the nanodomains. This work provides the experimental evidence that the nanoscopic lipid diffusion in the cell plasma membrane is heterogeneous and sensitive to the cholesterol concentration and temperature, shedding new light on the regulation mechanisms of nanoscopic membrane dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.