Abstract

Hydrogen sulfide (H2S) has been regarded as the third important gaseous signaling molecule involved in human physiological and pathological processes. Due to the high reactive and diffusible properties of H2S, real-time detection of H2S fluctuations in living biological specimens is crucial. Here, we present a Cu(II)-metalated 3D porous nanoscale metal-organic framework (nano-MOF) {CuL[AlOH]2}n (PAC; H6L = meso-tetrakis(4-carboxylphenyl)porphyrin) and successfully employ this nano-MOF as a novel heterogeneous fluorescence probe for H2S detection. As far as we know, nano-MOFs have never been used as selective fluorescence probes for H2S detection. On the basis of the advantages of nano-MOF materials, this biocompatible nano-MOF probe exhibits rapid response, excellent selectivity, and hypotoxicity in in situ detection of H2S and represents the most sensitive fluorescence probe for selective H2S detection under physiological pH. In addition, confocal imaging was achieved successfully in living cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call