Abstract

By 2050, it is estimated that the number of worldwide Alzheimer’s disease (AD) patients will quadruple from the current number of 36 million, while no proven disease-modifying treatments are available. At present, the underlying disease mechanisms remain under investigation, and recent studies suggest that the disease involves multiple etiological pathways. To better understand the disease and develop treatment strategies, a number of ongoing studies including the Alzheimer’s Disease Neuroimaging Initiative (ADNI) enroll many study participants and acquire a large number of biomarkers from various modalities including demographic, genotyping, fluid biomarkers, neuroimaging, neuropsychometric test, and clinical assessments. However, a systematic approach that can integrate all the collected data is lacking. The overarching goal of our study is to use machine learning techniques to understand the relationships among different biomarkers and to establish a system-level model that can better describe the interactions among biomarkers and provide superior diagnostic and prognostic information. In this pilot study, we use Bayesian network (BN) to analyze multimodal data from ADNI, including demographics, volumetric MRI, PET, genotypes, and neuropsychometric measurements and demonstrate our approach to have superior prediction accuracy.

Highlights

  • Alzheimer’s disease (AD) is a highly prevalent neurodegenrative disease and is widely recognized as a major, escalating epidemic and a worldwide challenge to global health care systems [1]

  • The primary goal of Alzheimer’s Disease Neuroimaging Initiative (ADNI) has been to test whether the serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early AD

  • The general inclusion/exclusion criteria are as follows: (1) healthy subjects: mini-mental state examination (MMSE) scores between 24 and 30, a Clinical Dementia Rating (CDR) of 0, non-depressed, non-MCI, and non-demented; (2) MCI subjects: MMSE scores between 24 and 30, a memory complaint, having objective memory loss measured by education adjusted scores on Wechsler Memory Scale Logical Memory II, a CDR of 0.5, absence of significant levels of impairment in other cognitive domains, essentially preserved activities of daily living, and an absence of dementia; and (3) mild AD: MMSE scores between 20 and 26, CDR of 0.5 or 1.0, and meets the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association (NINCDS/ADRDA) criteria for probable AD

Read more

Summary

Introduction

Alzheimer’s disease (AD) is a highly prevalent neurodegenrative disease and is widely recognized as a major, escalating epidemic and a worldwide challenge to global health care systems [1]. One major development is the Aβ hypothesis that assumes AD begins with abnormal processing of transmembrane Aβ precursor protein (APP). Such a malfunction of the APP metabolism will in turn trigger a series of pathological events, resulting in the toxic betaamyloid plaque in the human brain which is one defining characteristic of AD. This disease model has been articulated in Jack et al [2] who presented a hypothetical model for biomarker dynamics in AD pathogenesis.

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.