Abstract

Transistor count continues to increase for silicon devices following Moore's Law. But the failure of Dennard scaling has brought the computing community to a crossroad where power has become the major limiting factor. Thus future chips can have many cores; but only a fraction of them can be switched on at any point in time. This dark silicon era, where significant fraction of the chip real estate remains dark, has necessitated a fundamental rethinking in architectural designs. In this context, heterogeneous multi-core architectures combining functionality and performance-wise divergent mix of processing cores (CPU, GPU, special-purpose accelerators, and reconfigurable computing) offer a promising option. Heterogeneous multi-cores can potentially provide energy-efficient computation as only the cores most suitable for the current computation need to be switched on. This article presents an overview of the state-of-the-art in heterogeneous multi-core landscape.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.