Abstract

Heterogeneous microstructure of Zr46Cu46Al8 nanoglasses was studied by molecular dynamics simulation. Glass-glass interfaces in nanoglasses could be told apart by formulating a contrast in the number of the quasi-nearest atom. Compared to other short-range order analysis, the quasi-nearest atom can reflect the deviated densely packing atomic clusters at the glass-glass interfaces directly. In terms of geometric and chemical short-range order, the low local fivefold symmetry and chemical segregation of interfaces improve the structural heterogeneity of nanoglasses. The local deformation preferentially takes place at the interfaces with a larger number of quasi-nearest atoms, achieving local plastic deformation tuned visually at the glass-glass interfaces. The correlation between structural and deformation properties is quantitatively assessed by tuning glass-glass interfaces. It is envisioned that the interfaces, as weak regions, can be a critical defect to tune the heterogeneous microstructure of nanoglasses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.