Abstract

The HO 2 uptake to aerosol particles is potentially significant sink for the HO 2 radical in the marine atmosphere. To assess the heterogeneous loss of HO 2 on marine aerosol particles, we have investigated the uptake coefficients ( γ) of HO 2 for submicron aerosol particles of KCl, synthetic sea salt, and natural seawater under ambient conditions (760 Torr and 296 ± 2 K) using an aerosol flow tube (AFT) coupled with a chemical conversion/laser-induced fluorescence (CC/LIF) technique. γ values determined for dry and wet aerosols of KCl were 0.02 ± 0.01 and 0.07 ± 0.03 at 66% and 75% RH, respectively, while γ values for those doped with CuSO 4 was 0.55 ± 0.19 at 75% RH. γ values determined for synthetic sea-salt particles were 0.07 ± 0.03, 0.12 ± 0.04 and 0.13 ± 0.04 at 35%, 50%, 75% RH, respectively, while γ values for natural seawater particles were 0.10 ± 0.03, 0.11 ± 0.02 and 0.10 ± 0.03 at 35%, 50%, 75% RH, respectively. We recommend a HO 2 uptake coefficient in marine areas of 0.1 for modeling and estimated the contribution of heterogeneous loss of HO 2 by sea-salt aerosol particles in marine areas using a box model. Our box-model simulations suggested that daytime maximum HO 2 concentrations decreased to 87–94% of the values without heterogeneous loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.