Abstract

Transition metal oxides exhibit a plethora of electrical and magnetic properties described by their order parameters. In particular, ferroic orderings offer access to a rich spectrum of fundamental physics phenomena, in addition to a range of technological applications. The heterogeneous integration of ferroelectric and ferromagnetic materials is a fruitful way to design multiferroic oxides. The realization of freestanding heterogeneous membranes of multiferroic oxides is highly desirable. In this study, epitaxial BaTiO3 /La0.7 Sr0.3 MnO3 freestanding bilayer membranes are fabricated using pulsed laser epitaxy. The membrane displays ferroelectricity and ferromagnetism above room temperature accompanying the finite magnetoelectric coupling constant. This study reveals that a freestanding heterostructure can be used to manipulate the structural and emergent properties of the membrane. In the absence of the strain caused by the substrate, the change in orbital occupancy of the magnetic layer leads to the reorientation of the magnetic easy-axis, that is, perpendicular magnetic anisotropy. These results of designing multiferroic oxide membranes open new avenues to integrate such flexible membranes for electronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.