Abstract
Learning latent representations for users and points of interests (POIs) is an important task in location-based social networks (LBSN), which could largely benefit multiple location-based services, such as POI recommendation and social link prediction. Many contextual factors, like geographical influence, user social relationship and temporal information, are available in LBSN and would be useful for this task. However, incorporating all these contextual factors for user and POI representation learning in LBSN remains challenging, due to their heterogeneous nature. Although the encouraging performance of POI recommendation and social link prediction are delivered, most of the existing representation learning methods for LBSN incorporate only one or two of these contextual factors. In this paper, we propose a novel joint representation learning framework for users and POIs in LBSN, named UP2VEC. In UP2VEC, we present a heterogeneous LBSN graph to incorporate all these aforementioned factors. Specifically, the transition probabilities between nodes inside the heterogeneous graph are derived by jointly considering these contextual factors. The latent representations of users and POIs are then learnt by matching the topological structure of the heterogeneous graph. For evaluating the effectiveness of UP2VEC, a series of experiments are conducted with two real-world datasets (Foursquare and Gowalla) in terms of POI recommendation and social link prediction. Experimental results demonstrate that the proposed UP2VEC significantly outperforms the existing state-of-the-art alternatives. Further experiment shows the superiority of UP2VEC in handling cold-start problem for POI recommendation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.