Abstract

The roles played by ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors (IP₃Rs) in vascular smooth muscle in the microcirculation remain unclear. Therefore, the function of both RyRs and IP₃Rs in Ca(²+) signals and myogenic tone in hamster cremaster muscle feed arteries and downstream arterioles were assessed using confocal imaging and pressure myography. Feed artery vascular smooth muscle displayed Ca(²+) sparks and Ca(²+) waves, which were inhibited by the RyR antagonists ryanodine (10 μM) or tetracaine (100 μM). Despite the inhibition of sparks and waves, ryanodine or tetracaine increased global intracellular Ca(²+) and constricted the arteries. The blockade of IP₃Rs with xestospongin D (5 μM) or 2-aminoethoxydiphenyl borate (100 μM) or the inhibition of phospholipase C using U-73122 (10 μM) also attenuated Ca(2+) waves without affecting Ca(²+) sparks. Importantly, the IP₃Rs and phospholipase C antagonists decreased global intracellular Ca(2+) and dilated the arteries. In contrast, cremaster arterioles displayed only Ca(²+) waves: Ca(²+) sparks were not observed, and neither ryanodine (10-50 μM) nor tetracaine (100 μM) affected either Ca(²+) signals or arteriolar tone despite the presence of functional RyRs as assessed by responses to the RyR agonist caffeine (10 mM). As in feed arteries, arteriolar Ca(²+) waves were attenuated by xestospongin D (5 μM), 2-aminoethoxydiphenyl borate (100 μM), and U-73122 (10 μM), accompanied by decreased global intracellular Ca(²+) and vasodilation. These findings highlight the contrasting roles played by RyRs and IP₃Rs in Ca(²+) signals and myogenic tone in feed arteries and demonstrate important differences in the function of RyRs between feed arteries and downstream arterioles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.