Abstract

Drowsiness detection is a key feature in modern Advanced Driver Assistance Systems (ADAS). State-of-the-art approaches rely on machine learning techniques and neural networks to monitor unusual movements of the head and eyes activities. Unfortunately, due to their computationally intensive operations, integrating such algorithms in real-time and low-power operating scenarios, like auto-motive applications, is still quite challenging. This paper proposes an efficient hardware architecture for real-time drowsiness detection based on monitoring the driver’s eye blinking behaviour through the PERcentage of eye CLOSure (PERCLOS) metric. Experimental results obtained on the Xilinx Zynq XC7Z020 FPGA SoC show that the proposed system is up to 33.3 times faster and 2.6 times less area consuming than state-of-the-art competitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.