Abstract
AbstractMid‐ocean ridge basalts (MORB) from the Central Indian Ridge (CIR) between 12° and 17°S show a wide range of geochemical and isotopic variations. Particularly, MORB from a segment between 14° and 15°S are more enriched in incompatible trace elements with more radiogenic Sr and Pb isotope and unradiogenic Nd isotope values than the lavas between 15° and 16°S with geochemical features of normal MORB. However, the causes for the enrichment between 14° and 15°S are poorly constrained. In this study, we re‐examined the CIR MORB from 12° to 17°S with new geochemical data obtained based on high spatial resolution sampling to better understand the nature of the enriched mantle source. Our new geochemical data show that the MORB between 14° and 15°S, with maximum values for (La/Sm)N = 1.95, 87Sr/86Sr = 0.703526 and 206Pb/204Pb = 18.7558, are more enriched than those from the southern segments (16° to 20°S) known to be influenced by the Réunion mantle component. The new trace element and isotopic compositions of MORB suggest that three mantle end‐members are required to explain the geochemical variations shown between 14° and 16°S: the depleted Indian‐type MORB mantle, Réunion Plume (RP), and Seychelles/Madagascar‐like continental crust components. Moreover, our mixing model suggests that the differences in enriched MORB signature from 14° to 20°S are due to variable proportions of continental material previously mixed with the RP. Our study implies that a continental component interacted with the plume into the asthenosphere, possibly beneath Madagascar or below Mauritius Island and the Mascarene plateau.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.