Abstract

In the Machine Learning (ML) era, faced with challenges, including exponential multi-sensor data, an increasing number of actuators, and data-intensive algorithms, the development of Unmanned Aerial Vehicles (UAVs) is standing on a new footing. In particular, the Flight Management System (FMS) plays an essential role in UAV design. However, the trade-offs between performance and SWaP-C (Size, Weight, Power, and Cost) and reliability–efficiency are challenging to determine for such a complex system. To address these issues, the identification of a successful approach to managing heterogeneity emerges as the critical question to be answered. This paper investigates Heterogeneous Computing (HC) integration in FMS in the UAV domain from academia to industry. The overview of cross-layer FMS design is firstly described from top–down in the abstraction layer to left–right in the figurative layer. In addition, the HC advantages from Light-ML, accelerated Federated Learning (FL), and hardware accelerators are highlighted. Accordingly, three distinct research focuses detailed with visual-guided landing, intelligent Fault Diagnosis and Detection (FDD), and controller-embeddable Power Electronics (PE) to distinctly illustrate advancements of the next-generation FMS design from sensing, and computing, to driving. Finally, recommendations for future research and opportunities are discussed. In summary, this article draws a road map that considers the heterogeneous advantages to conducting the Flight-Management-as-a-Service (FMaaS) platform for UAVs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.