Abstract
Lagrangian sensing for tracing hydrodynamic trajectories is an innovative approach for studying estuarial environments. Actuated Lagrangian sensors are capable of avoiding obstacles and navigating when active and retain a passive hydrodynamic profile that is suited for Lagrangian sensing when passive. A heterogeneous fleet of actuated and passive drifting sensors is presented. Data assimilation using a high-performance computing HPC cluster that runs the ensemble Kalman filter EnKF is an essential component of the estuarial state estimation system. The performance of the mixed capability fleet and the data assimilation backend is evaluated in the context of a landmark 96-unit river study in the Sacramento-San Joaquin Delta region of California.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.