Abstract

Distinct feature extraction methods are simultaneously used to describe bearing faults. This approach produces a large number of heterogeneous features that augment discriminative information but, at the same time, create irrelevant and redundant information. A subsequent feature selection phase filters out the most discriminative features. The feature models are based on the complex envelope spectrum, statistical time- and frequency-domain parameters, and wavelet packet analysis. Feature selection is achieved by conventional search of the feature space by greedy methods. For the final fault diagnosis, the k-nearest neighbor classifier, feedforward net, and support vector machine are used. Performance criteria are the estimated error rate and the area under the receiver operating characteristic curve (AUC-ROC). Experimental results are shown for the Case Western Reserve University Bearing Data. The main contribution of this paper is the strategy to use several different feature models in a single pool, together with feature selection to optimize the fault diagnosis system. Moreover, robust performance estimation techniques usually not encountered in the context of engineering are employed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call