Abstract

We combine a viscoelastic model for the interseismic process and an elastodynamic model for the coseismic process to explore the dynamics (over multiple earthquake cycles) of two parallel strike‐slip faults embedded in a two‐dimensional full space. The step over fault geometry results in a buildup of heterogeneous fault stress near the step over. This heterogeneous stress accumulates at the early stage of the evolution of the fault system, and finally stabilizes after a number of earthquake cycles. The heterogeneity in fault stress varies with the geometrical parameters (e.g., width and along‐strike overlap/gap) of the step over, as well as the rupture history of the fault system. This heterogeneous fault stress from previous earthquakes has significant effects on earthquake rupture initiation, propagation, and termination. The locations with a low normal stress level near a step over are favorable points for earthquake initiation. Rupture can jump a 4 km wide compressional step over and a 8 km or wider dilational step over if the fault system has historically experienced many earthquakes. A young step over with less induced heterogeneity allows rupture to jump only smaller step over widths. These results may have important implications for seismic hazard analysis in areas where segmented strike‐slip faults predominate, particularly for estimating maximum earthquake potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.