Abstract

1. The electrical activity of sinoatrial node cells is heterogeneous. To understand the reasons for this, the density of the delayed-rectifier K+ current and its two components, i(K,r) and i(K,s), as a function of the size (as measured by cell capacitance) of rabbit sinoatrial node cells was investigated using the whole-cell voltage-clamp technique at 35 degrees C. 2. i(K,r) and i(K,s) were isolated using E-4031 and 293B. Features of the E-4031-sensitive and 293B-insensitive currents corresponded well to those of i(K,r), while features of the E-4031-insensitive and 293B-sensitive currents corresponded well to those of i(K,s). 3. The densities of the outward current under control conditions and the drug-sensitive and -insensitive currents were significantly (P < 0.01) correlated with cell capacitance, with current densities being greater in larger cells. 4. The effects of partial blockade of i(K,r) by 0.1 microM E-4031 on spontaneous action potentials were greater in smaller cells. 5. It is concluded that there are cell size-dependent differences in the density of the i(K,r) and i(K,s) components, and these may be involved in the heterogeneity of the electrical activity of single sinoatrial node cells as well as that of the intact sinoatrial node.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.