Abstract

The gastrointestinal tract is emerging as a major site of chemosensation in mammalian studies. Enteroendocrine cells are chemosensory cells in the gut which produce regulatory peptides in response to luminal contents to regulate gut physiology, food intake, and glucose homeostasis, among other possible functions. Increasing evidence shows that mammalian taste receptors and taste signaling molecules are expressed in enteroendocrine cells in the gut. Invertebrate models such as Drosophila can provide a simple and genetically tractable system to study the chemosensory functions of enteroendocrine cells in vivo. To establish Drosophila enteroendocrine cells as a model for studying gut chemosensation, we used the GAL4/UAS system to examine the expression of all 68 Gustatory receptors (Grs) in the intestine. We find that 12 Gr-GAL4 drivers label subsets of enteroendocrine cells in the midgut, and examine colocalization of these drivers with the regulatory peptides neuropeptide F (NPF), locustatachykinin (LTK), and diuretic hormone 31 (DH31). RT-PCR analysis provides additional evidence for the presence of Gr transcripts in the gut. Our results suggest that the Drosophila Grs have chemosensory roles in the intestine to regulate physiological functions such as food uptake, nutrient absorption, or sugar homeostasis.

Highlights

  • Taste sensing is essential for the survival of all animals, to identify nutrient-rich food sources and avoid harmful substances

  • At least two independent lines were examined for most Gustatory receptors (Grs)-GAL4 transgenes, with the exception of Gr10b, Gr21a, Gr22c, Gr22d, Gr28b.d, Gr28b.e, Gr39a.a, Gr39a.c, Gr39a.d, Gr47a, Gr59b, Gr64b, Gr64c and Gr98a, for which only single lines were available

  • Colocalization of Gr-GAL4-labeled midgut cells with the enteroendocrine cell marker Prospero supported the idea that distinct subsets of midgut cells exist

Read more

Summary

Introduction

Taste sensing is essential for the survival of all animals, to identify nutrient-rich food sources and avoid harmful substances. G-protein coupled receptors (GPCRs) in the T1R and T2R family mediate the detection of sweet, umami, and bitter taste in the oral epithelium [1]. The T1R family has three distinct subunits that mediate detection of sweet taste (T1R2 + T1R3) or umami and other amino acids (T1R1 + T1R3) as heterodimers. The T2R family encodes over 30 genes encoding different receptors that mediate bitter taste [1]. Gr5a, Gr64a, and Gr64f encode sugar receptors and are members of a subfamily of eight Grs [6,7,8]. Not all Grs are involved in detecting taste; for example, Gr21a and Gr63a are responsible for the CO2 response [15,16]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.