Abstract

The electron transfer dynamics and electrocatalytic behaviour of ferrocene-terminated self-assembled monolayers (SAMs), co-adsorbed with single-walled carbon nanotubes (SWCNTs) on a gold electrode, have been interrogated for the first time. Ferrocene monocarboxylic acid (FMCA) or ferrocene dicarboxylic acid (FDCA) was covalently attached to the cysteamine (Cys) monolayer to form Au-Cys-FMCA and Au-Cys-FDCA, respectively. The same covalent attachment strategy was used to form the mixed SWCNTs and ferrocene-terminated layers (i.e. Au-Cys-SWCNT/FMCA and Au-Cys-SWCNT/FDCA). Using cyclic voltammetry and electrochemical impedance spectroscopy, the impact of neighbouring SWCNTs on the electron transfer dynamics of the ferrocene molecular assemblies in an acidic medium (0.5 M H(2)SO(4)) and in a solution of an outer-sphere redox probe ([Fe(CN)(6)](4-)/[Fe(CN)(6)](3-)) was explored. The electron transfer rate constants in both media essentially decreased as Au-Cys-FMCA > Au-Cys-SWCNT/FDCA > Au-Cys-FDCA > Au-Cys-SWCNT/FMCA. This trend has been interpreted in terms of several factors such as the locations of the ferrocene species in a range of environments with a range of potentials, the proximity/interactions of the ferrocenes with one another, and electrostatic interaction or repulsion existing between the negatively-charged redox probe and the modified electrodes. The thiocyanate ion (SCN(-)) was used as a model analyte to examine the influence of the neighbouring SWCNTs on the electrocatalytic ability of the ferrocene assemblies. The Au-Cys-SWCNT/FDCA showed the best catalytic activity (in terms of onset potential and catalytic peak current height) for the oxidation of SCN(-), possibly due to the repulsive interactions between the negatively charged SCN(-) and high number of surface -COOH species at the SWCNT/FDCA. This study has provided some useful insights as to how CNTs co-assembled with ferrocene-terminated thiols could impact on the electron transfer kinetics as well as the electrocatalytic detection of the self-assembled ferrocene layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.