Abstract

Since decades, the concept of vibrational density of states in glasses has been mirrored in liquids by the instantaneous-normal-mode spectrum. In glasses instantaneous configurations are believed to be situated close to minima of the potential-energy hypersurface and all eigenvalues of the associated Hessian matrix are positive. In liquids this is no longer true, and modes corresponding to both positive and negative eigenvalues exist. The instantaneous-normal-mode spectrum has been numerically investigated in the past, and it has been demonstrated to bring important information on the liquid dynamics and transport properties. A systematic deeper theoretical understanding is now needed. Heterogeneous-elasticity theory has proven to be particularly successful in explaining many details of the low-frequency excitations in glasses, ranging from the thoroughly studied boson peak, to other anomalies related to the crossover between wave-like and random-matrix-like excitations. Here we present an extension of heterogeneous-elasticity theory to the liquid state, and show that the outcome of the theory agrees well to the results of extensive molecular-dynamics simulations of a model liquid at different temperatures. We find that the spectrum of eigenvalues ρ(λ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\rho (\\lambda )$$\\end{document} has a sharp maximum close to (but not at) λ=0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\lambda =0$$\\end{document}, and decreases monotonically with |λ|\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$|\\lambda |$$\\end{document} on both its stable and unstable side. We show that the spectral shape strongly depends on temperature, being symmetric at high temperatures and becoming rather asymmetric at low temperatures, close to the dynamical critical temperature. Most importantly, we demonstrate that the theory naturally reproduces a surprising phenomenon, a zero-energy spectral singularity with a cusp-like character developing in the vibrational spectra upon cooling. This feature, known from a few previous numerical studies, has been generally overlooked in the past due to a misleading representation of the data. We provide a thorough analysis of this issue, based on both very accurate predictions of our theory, and computational studies of model liquid systems with extended size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.