Abstract

We rigorously derive a Kirchhoff plate theory, via Γ-convergence, from a three-dimensional model that describes the finite elasticity of an elastically heterogeneous, thin sheet. The heterogeneity in the elastic properties of the material results in a spontaneous strain that depends on both the thickness and the plane variables x′. At the same time, the spontaneous strain is h-close to the identity, where h is the small parameter quantifying the thickness. The 2D Kirchhoff limiting model is constrained to the set of isometric immersions of the mid-plane of the plate into ℝ3, with a corresponding energy that penalizes deviations of the curvature tensor associated with a deformation from an x′-dependent target curvature tensor. A discussion on the 2D minimizers is provided in the case where the target curvature tensor is piecewise constant. Finally, we apply the derived plate theory to the modeling of swelling-induced shape changes in heterogeneous thin gel sheets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.