Abstract

Molecular dynamics computer simulations of a binary Lennard-Jones glass under shear are presented. The mechanical response of glassy states having different thermal histories is investigated by imposing a wide range of external shear rates, at different temperatures. The stress-strain relations exhibit an overshoot at a strain of around 0.1, marking the yielding of the glass sample and the onset of plastic flow. The amplitude of the overshoot shows a logarithmic behavior with respect to a dimensionless variable, given by the age of the sample times the shear rate. Dynamical heterogeneities having finite lifetimes, in the form of shear bands, are observed as the glass deforms under shear. By quantifying the spatial fluctuations of particle mobility, we demonstrate that such shearbanding occurs only under specific combinations of imposed shear-rate, age of glass and ambient temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.