Abstract

Network embedding (graph embedding) has become the focus of studying graph structure in recent years. In addition to the research on homogeneous networks and heterogeneous networks, there are also some methods to attempt to solve the problem of dynamic network embedding. However, in dynamic networks, there is no research method specifically for heterogeneous networks. Therefore, this paper proposes a heterogeneous dynamic graph attention network (HDGAN), which attempts to use the attention mechanism to take the heterogeneity and dynamics of the network into account at the same time, so as to better learn network embedding. Our method is based on three levels of attention, namely structural-level attention, semantic-level attention and time-level attention. Structural-level attention pays attention to the network structure itself, and obtains the representation of structural-level nodes by learning the attention coefficients of neighbor nodes. Semantic-level attention integrates semantic information into the representation of nodes by learning the optimal weighted combination of different meta-paths. Time-level attention is based on the time decay effect, and the time feature is introduced into the node representation by neighborhood formation sequence. Through the above three levels of attention mechanism, the final network embedding can be obtained.Through experiments on two real-world heterogeneous dynamic networks, our models have the best results, proving the effectiveness of the HDGAN model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call