Abstract
Massive multi-input multi-output (MIMO) has been recognized as a key technology for fifth generation (5G) networks. Indeed, it enables to meet the challenging requirements of increased coverage, capacity and massive connectivity. Nevertheless, its performance is limited by channel estimation overhead which scales in time division duplexing (TDD) systems with the number of active users, consequently limiting the system’s efficiency. In this paper, we address the bottleneck of channel estimation in TDD Massive MIMO through optimized lean carrier. We propose an adaptive uplink training scheme that exploits the heterogeneous Doppler spreads of the different users in order to reduce the periodicity of uplink sounding signal transmission. The idea is to enable the network to plan its uplink training decisions for long time periods while taking into consideration user mobility. To this end, we formulate a two time-scale control problem that takes into account the different rates of the wireless channel and location changes. In the fast time scale, an optimized uplink training policy is derived based on estimated user locations. In the slow time scale, positioning decisions are optimized. Simulation results show that the optimized training policies provide considerable improvement in the system efficiency even with partial location knowledge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.