Abstract

In real-world transfer learning tasks, especially in cross-modal applications, the source domain and the target domain often have different features and distributions, which are well known as the heterogeneous domain adaptation (HDA) problem. Yet, existing HDA methods focus on either alleviating the feature discrepancy or mitigating the distribution divergence due to the challenges of HDA. In fact, optimizing one of them can reinforce the other. In this paper, we propose a novel HDA method that can optimize both feature discrepancy and distribution divergence in a unified objective function. Specifically, we present progressive alignment, which first learns a new transferable feature space by dictionary-sharing coding, and then aligns the distribution gaps on the new space. Different from previous HDA methods that are limited to specific scenarios, our approach can handle diverse features with arbitrary dimensions. Extensive experiments on various transfer learning tasks, such as image classification, text categorization, and text-to-image recognition, verify the superiority of our method against several state-of-the-art approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.