Abstract

An idealized electrostatically actuated microelectromechanical system involving an elastic plate with a heterogeneous dielectric material is considered. Starting from the electrostatic and mechanical energies, the governing evolution equations for the electrostatic potential and the plate deflection are derived from the corresponding energy balance. This leads to a free boundary transmission problem due to a jump of the dielectric permittivity across the interface separating the elastic plate and free space. Reduced models retaining the influence of the heterogeneity of the elastic plate under suitable assumptions are obtained when either the elastic's plate thickness or the aspect ratio of the device vanishes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.