Abstract
The heterogeneous decomposition of CHF2OCH2C2F5, a potential substitute for hydrofluorocarbons, over aluminosilica clay minerals in air, was confirmed to occur at 313 K in a closed-circulation reactor. HC(O)OCH2C2F5, the gaseous main product was produced through hydrolytic elimination of F atoms from the CHF2OCH2- group. CHF2OCH2CF3 also decomposed to HC(O)OCH2CF3 over the clay minerals. The pseudo-first-order rate constants were determined for the decompositions over eight types of clay minerals (19 samples). The various clay minerals had different abilities to decompose these hydrofluoroethers. The decomposition rates per Brunauer-Emmett-Teller surface area and the conversion ratios to HC(O)OCH2C2F5 or HC(O)OCH2CF3 for the reactions over kaolinite, halloysite, and illite were high in comparison to those for the same reactions over montmorillonite, hectorite, and nontronite. The dependence of this heterogeneous reaction on temperature and relative humidity indicates that, in the environment, the reaction could be important only in hot, dry regions. The results did not suggest that sunlight would directly accelerate the decay of CHF2OCH2CF3 or CHF2OCH2C2F5. In the presence of clay-containing soils in arid areas, this hydrolytic oxidation reaction may significantly affect both the lifetime and the degradation products of CHF2OCH2CF3 and CHF2OCH2C2F5 in the troposphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.