Abstract
This paper proposes a foot-mounted zero velocity update (ZVU) aided inertial measurement unit (IMU) filtering algorithm for pedestrian tracking in indoor environment. The algorithm outputs are the foot kinematic parameters that include foot orientation, position, velocity, acceleration, and gait phase. The foot motion filtering algorithm incorporates methods for orientation estimation, gait detection, and position estimation. A novel complementary filter is introduced to better preprocess the sensor data from a foot-mounted IMU containing triaxial angular rate sensors, accelerometers, and magnetometers and to estimate the foot orientation without resorting to global positioning system data. A gait detection is accomplished using a simple states detector that transitions between states based on acceleration and angular rate measurements. Once foot orientation is computed, position estimates are obtained using integrating acceleration and velocity data, which has been corrected at step stance phase for drift using an implemented ZVU algorithm, leading to a position accuracy improvement. We show our findings experimentally by using of a commercial IMU during regular human walking trials in a typical public building. Experiment results show that the positioning approach achieves approximately a position accuracy around 0.4% and improves the performance regarding recent works of literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.