Abstract

Cutting tool condition prognosis is critical to process stability and quality assurance, but affected by complex material-process interactions. This paper presents a hybrid machine learning method that integrates heterogeneous data (structured process parameters and unstructured power profiles and tool wear images) for tool condition prognosis. Surface and wear images are first analyzed by a convolutional neural network to identify surface roughness and wear severity. The results are subsequently fed into a recurrent neural network to reveal the relationship between tool condition degradation and power profiles. The fidelity of the method is validated in milling of H13 steel and Inconel 718.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.