Abstract

Heterogeneous nucleation of a new bulk phase on a flat substrate can be associated with the surface phase transition called wetting transition. When this bulk heterogeneous nucleation occurs on a completely wettable flat substrate with a zero contact angle, the classical nucleation theory predicts that the free-energy barrier of nucleation vanishes. In fact, there always exists a critical nucleus and a free-energy barrier as the first-order prewetting transition will occur even when the contact angle is zero. Furthermore, the critical nucleus changes its character from the critical nucleus of surface phase transition below bulk coexistence (undersaturation) to the critical nucleus of bulk heterogeneous nucleation above the coexistence (oversaturation) when it crosses the coexistence. Recently, Sear [J. Chem. Phys. 129, 164510 (2008)] has shown, by a direct numerical calculation of nucleation rate, that the nucleus does not notice this change when it crosses the coexistence. In our work, the morphology and the work of formation of critical nucleus on a completely wettable substrate are re-examined across the coexistence using the interface-displacement model. Indeed, the morphology and the work of formation changes continuously at the coexistence. Our results support the prediction of Sear and will rekindle the interest on heterogeneous nucleation on a completely wettable substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.