Abstract

Multi-scale imaging with large field of view is pivotal for fast motion detection and target identification. However, existing single camera systems are difficult to achieve snapshot multi-scale imaging with large field of view. To solve this problem, we propose a design method for heterogeneous compound eye, and fabricate a prototype of heterogeneous compound eye camera (HeCECam). This prototype which consists of a heterogeneous compound eye array, an optical relay system and a CMOS sensor, is capable of dual-scale imaging in large field of view (360°×141°). The heterogeneous compound eye array is composed of 31 wide-angle (WA) subeyes and 226 high-definition (HD) subeyes. An optical relay system is introduced to re-image the curved focal surface formed by the heterogeneous compound eye array on a CMOS sensor, resulting in a heterogeneous compound eye image containing dual-scale subimages. To verify the imaging characteristics of this prototype, a series of experiments, such as large field of view imaging, imaging performance, and real-world scene imaging, were conducted. The experiment results show that this prototype can achieve dual-scale imaging in large field of view and has excellent imaging performance. This makes the HeCECam has great potential for UAV navigation, wide-area surveillance, and location tracking, and paves the way for the practical use of bio-inspired compound eye cameras.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call