Abstract

The degree to which developmentally related alterations in cardiac creatine kinase (CK) activity reflect modification of CK isoenzyme gene expression remains uncertain. The present studies addressed this question by assessing multiple aspects of CK in rat heart during the perinatal to adult transition. In addition to whole tissue, isolated and purified muscle and nonmuscle cells were studied, as well as myofibrillar, mitochondrial, and cytosolic subcellular fractions. Whole homogenate CK enzyme specific activity nearly doubled during the weanling to adult developmental period. Muscle cell CK activity increased by a similar magnitude. Nonmuscle cell activity decreased. In the adult heart, both myofibrillar and mitochondrial CK activities were augmented versus the weanling heart. The cytoplasmic fraction activity held constant during development. Electrophoretic isoenzyme analyses of both weanling and adult cardiac muscle cells indicated the presence of mitochondrial CK and MM-CK isoforms. Weanling heart nonmuscle cells contained mitochondrial, MM, MB, and BB isoforms; however, BB isoform was not detected in the adult heart nonmuscle cells. Arrhenius plots provided information regarding heart muscle and nonmuscle cell alterations during development. CK activation energies were also determined for whole tissue, muscle/nonmuscle cells, myofibrils, mitochondria, and cytosol. Results demonstrate that heterogeneous muscle/nonmuscle cellular composition and differential myofibrillar/mitochondrial subcellular composition account for normal, developmentally related changes in heart CK enzyme activity. CK isoenzyme gene expression changes were not detected in cardiac muscle cells, and transition of CK-B to CK-M gene expression is limited to nonmuscle cells during normal, weanling to adult development in the rat heart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.