Abstract

The production and use of terpene-based fuels represents a renewable source of energy in the transportation sector, especially in the aviation sector. The literature on the conversion of terpenes into valuable compounds is not new but has been based on the production of products for cosmetics and pharmaceutics. Several established chemical routes are also a way to develop drop-in fuels. The present work explores all the main chemical processes that can transform terpenes into more valuable fuels or additives, focusing on the use of heterogeneous catalysis, catalyst type, operating conditions, and reaction performance. α-pinene is the most studied catalyst, since it is the main component of turpentine. Isomerization is the most frequently applied chemical pathway used to enhance fuel properties, and a wide group of heterogeneous catalysts have been reported, with sulphonic acid resin catalysts, transition metals, alumina, and silicates being the most used. This work also explores the current production and commercialization of terpenes, as well as the challenges for their use as fuels at a commercial scale. The future challenge is to discover new catalysts or to improve the performance of the current products and reduce production costs. The feasibility of the production and commercialization of terpene-derived fuels is also linked to oil prices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.