Abstract

Jatropha as an non edible plant is a promising plant for biodiesel production Positive environmental impacts from the cultivation of this plant including the improvement of wasteland, sustainable employment for local people, and carbon farming. For industrial biodiesel production, homogeneous basic catalyst, including KOH, NaOH, as well as potassium and sodium alkoxides, are commonly used for the transetrification of Jatropha oils with methanol to produce fatty acid methyl ester. However the base-catalyzed process suffers from several drawbacks, such as difficulty in recycling catalyst and environmental pollution. The aim of this paper is to circumvent homogeneous process problems, attempts to use heterogeneous catalysts in the transetrification of Jatropha oils.Titanium supported MgO catalyst samples ( 10 and 20 wt % MgO loading ) were prepared by incipient wetness impregnation method and characterized using FTIR, XRF, BET and XRD techniques. These materials were tested as catalyst for the conversion of Jatropha oil to biodiesel in the presence of methanol. The effects of reaction temperature, reaction time and MgO loading on the Jatropha oil conversion have been established. It was observed that for the same reaction time and MgO loading, increasing the reaction temperature increased the biodiesel yield. For example, the oil conversion over 20% MgO/TiO2 catalyst after 60 min of reaction at 60ْ C, 150ْ C, 175ْ C, 200ْ C and 225ْ C was found to be 42,55,86,89 and 100% respectively. An increase in oil conversion was also observed when the reaction time was increased. For example, biodiesel yield of 37, 43, 50, 51, for 10% MgO/TiO2 after 15, 30, 45 and 60 min respectively were measured at 175ْ C.Catalytic properties for MgO/TiO2 solid catalyst were evaluated for the conversion of Jatropha oil to biodiesel. The effects of reaction temperature, reaction time and MgO loading on the Jatropha oil conversion have been established. It was observed that oil conversion increases with the increase in reaction temperature and reaction time. The effect of MgO loading on the Jatropha conversion was found to depend on the operating temperature. An increase in Jatropha oil conversion with an increase in MgO loading was observed at reaction temperature above 150ْC, So the cultivation of Jatropha in Yemen will improve the economic and environmental situation. In addition the researches should be continued for getting more reused catalyst with sufficient properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.