Abstract

The previously poorly documented 26–16.6 ka interval of pyroclastic volcanism from Tongariro Volcano is marked by three distal lapilli fall units (Rt1-3) exposed in ring-plain deposits. The distal Rt1-3 units are tentatively correlated to proximal scoria deposits on the upper slopes of North Crater based on their dispersal patterns, petrography and geochemistry. Lapilli in each of the Rt1-3 deposits are characterised by variable groundmass crystallinity, vesicularity and colour within individual clasts. Matrix glasses are mostly microlite-free, and compositionally diverse across the deposits (SiO2 = 62–75 wt%), with wide composition ranges occurring within single clasts. The glasses represent different melts that were mingled and mixed shortly before eruption; a finding supported by widely variable Fe–Ti oxide equilibrium temperature estimates (∼830–1,200°C). Ranges of 30–160°C (typically 70°C) occur within individual clasts. Some clinopyroxene crystals display Mg-rich (∼Mg #88) rim zones around homogeneous low-Mg (∼Mg #68) cores, with abrupt transition zones. This zoning is interpreted as resulting from the injection of a more mafic melt into a stagnating, resident magma. Crystal-melt equilibria indicate that several episodes of mafic intrusion occurred, to produce hybrid melts with zoned crystals forming isolated ponds within the resident magma. Variable mixing from the percolation of melts and the coalescence of melt ponds would explain the wide range of melt compositions and equilibrium temperatures observed in the ejecta. The magma heterogeneity was preserved by quenching on prompt eruption, with much of the short-duration chaotic mixing of melts and crystals occurring in the conduit. The Rt1-3 eruptions were from an open magmatic system consisting of one or more long-lived stagnant crystal mush zones, from which eruptions were rapidly triggered by new injections of mafic magmas from greater depths. A similar pattern of magmatic dynamics was observed in the much smaller 1995 eruptions of the neighbouring Ruapehu Volcano.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.