Abstract

In this study, three-dimensional heterogeneous and homogenized finite element models are used to predict the indentation response of particle reinforced metal matrix composites (PRMMCs). The matrix is assumed to have elasto-plastic behavior whereas the particles (uniform in size and spherical in shape) are assumed to be harder than the matrix, and possess linear elastic behavior. The particles (25 % by volume) are randomly distributed in the metal matrix. Two modeling approaches are used. In the first approach, the PRMMC is fully replaced by an equivalent homogenous material, and its material properties are obtained through homogenization using representative volume element approach under periodic boundary conditions. In second approach, a small cubical volume under the indenter is modeled as heterogeneous material with randomly distributed particles, whereas the remaining domain is assigned equivalent material properties obtained through homogenization. The elastic material properties obtained through simulations are found within Hashin–Shtrikman bounds. A suitable size cubical volume consisting of heterogeneities under the indenter is established by considering different cubical volumes so as to capture the actual indentation response. The simulations are also carried out for different particle sizes to establish a suitable particle size. These simulations show that the second modeling approach yields harder indentation response as compared to first modeling approach due to the local particle concentration under the indenter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.