Abstract

Inhaled nanoparticles (NPs) can deposit in alveoli where they interact with the pulmonary surfactant (PS) and potentially induce toxicity. Although nano-bio interactions are influenced by the physicochemical properties of NPs, isolated NPs used in previous studies cannot accurately represent those found in atmosphere. Here we used molecular dynamics simulations to investigate the interplay between two types of NPs associated with benzo[a]pyrene (BaP) at the PS film. Silicon NPs (SiNPs), regardless of aggregation and adsorption, directly penetrated through the PS film with minimal disturbance. Meanwhile, BaPs adsorbed on SiNPs were rapidly solubilized by PS, increasing the BaP’s bioaccessibility in alveoli. Carbon NPs (CNPs) showed aggregation and adsorption-dependent effects on the PS film. Compared to isolated CNPs, which extracted PS to form biomolecular coronas, aggregated CNPs caused more pronounced PS disruption, especially around irregularly shaped edges. SiNPs in mixture exacerbated the PS perturbation by piercing PS film around the site of CNP interactions. BaPs adsorbed on CNPs were less solubilized and suppressed PS extraction, but aggravated biophysical inhibition by prompting film collapse under compression. These results suggest that for proper assessment of inhalation toxicity of airborne NPs, it is imperative to consider their heterogeneous aggregation and adsorption of pollutants under atmospheric conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.